PRECONGRESS COURSE 14

Is the oocyte the main determinant of embryo quality? Strategies for the selection of the most competent oocyte

Middle East Fertility Society Exchange course Geneva – Switzerland, 2 July 2017

Is the oocyte the main determinant of embryo quality? Strategies for the selection of the most competent oocyte

Geneva, Switzerland 2 July 2017

Organised by the Middle East Fertility Society (MEFS)

Contents

Cours educa	e coordination, course type, course description, target audience, ational needs and expected outcomes	Page 3
Progr	amme	Page 4
Speak	ters' contributions	
	Oocyte competence: The mitochondria hypothesis Dagan Wells, United Kingdom	Page 5
	Does oocyte mitochondrial injection improve outcomes in women with multiple IVF failures? An assessment of biological rational and clinical data <i>Kutluk H. Oktay, U.S.A.</i>	Page 6
	Oocyte competence: The hypoxia hypothesis Jeremy G. Thompson, Australia	Page 33
	Androgen priming of antral follicles prior to assisted reproduction: An oocyte rejuvenating therapy? Johnny Awwad, Lebanon	Page 47
	Oocyte competence: The aneuploidy hypothesis <i>Elpida Fragouli, United Kingdom</i>	Page 63
	Does polar body analysis accurately predict the aneuploidy status of the developing embryo? Alan H. Handyside, United Kingdom	Page 78
	Oocyte competence: The follicle environment hypothesis Jeremy G. Thompson, Australia	Page 92
	Human cumulus cells molecular signature: Does it predict oocyte competence and embryo implantation potential? <i>Samir Hamamah, France</i>	Page 106

Page 128

Course coordination

Johnny Awwad (Lebanon) and Mohammad Aboulghar (Egypt)

Course type

Advanced

Course description

The oocyte is the key player in the sperm-egg interaction and the major determinant of embryo developmental potential. In addition to transmitting the maternal chromosomal complement, it also contributes the mitochondrial genome to the developing embryo. Surprisingly little research have focused on studying the oocyte contribution to a successful implantation. Determining oocyte quality remains restricted to a morphological analysis, a well-proven inaccurate science. Alternative innovative strategies, the outcome of extensive research, could prove useful in enhancing the ability of the treating team to select the most competent oocytes for fertilization and subsequent embryo transfer. In addition to advancing our ability to alter reproductive pathways, such technologies have also greatly expanded our understanding of the biology of reproduction. Oocyte competence could hence be better identified on the basis of minimally invasive enhanced diagnostic modalities, such as distribution pattern and function of mitochondria, polar body genomic analysis, cumulus cell molecular signature and many others. Some of these developments have also led to focused interventions designed to improve oocyte reproductive performance, namely mitochondrial enhancement and androgen priming.

This pre-congress course discusses biologic pathways which influence oocyte competence and evaluates diagnostic and therapeutic interventions designed to promote oocytes with the highest reproductive potential.

Target audience

Fertility Specialists and Reproductive Endocrinologists

Educational needs and expected outcomes

At the completion of this pre-congress course, participants should be able to:

Describe the biologic pathways which determine oocyte competence

Evaluate the merits of minimally invasive diagnostic modalities in enhancing the selection of the most competent oocyte for fertilization

Develop an evidence-based assessment of the value of proposed interventions in improving the reproductive capability of women

Scientific programme

Chairman:	Mohamed A. Aboulghar, Egypt
09:00 - 09:30	Oocyte competence: The mitochondria hypothesis Dagan Wells, United Kingdom
09:30 - 09:45	Discussion
09:45 - 10:15	Does oocyte mitochondrial injection improve outcomes in women with multiple IVF failures? An assessment of biological rational and clinical data Kutluk H. Oktay, U.S.A.
10:15 - 10:30	Discussion
10:30 - 11:00	Coffee break
Chairman:	Michel Abou Abdallah, Switzerland
11:00 - 11:25	Oocyte competence: The hypoxia hypothesis Jeremy G. Thompson, Australia
11:25 - 11:50	Oocyte competence: The androgen hypothesis
11:50 - 12:15	Androgen priming of antral follicles prior to assisted reproduction: An oocyte rejuvenating therapy?
12:15 - 12:30	Discussion
12:30 - 13:30	Lunch break
Chairman:	Johnny Awwad, Lebanon
13:30 - 14:00	Oocyte competence: The aneuploidy hypothesis Elpida Fragouli, United Kingdom
14:00 - 14:15	Discussion
14:15 - 14:45	Does polar body analysis accurately predict the aneuploidy status of the developing embryo? Alan H. Handyside, United Kingdom
14:45 - 15:00	Discussion
15:00 - 15:30	Coffee break
Chairman:	Mohamed A. Aboulghar, Egypt
15:30 - 16:00	Oocyte competence: The follicle environment hypothesis Jeremy G. Thompson, Australia
16:00 - 16:15	Discussion
16:15 - 16:45	Human cumulus cells molecular signature: Does it predict oocyte competence and embryo implantation potential? Samir Hamamah, France
16:45 - 17:00	Discussion

Oocyte competence: The mitochondria hypothesis

Dagan Wells, United Kingdom

Contribution not submitted by the speaker

Does oocyte mitochondrial injection improve outcomes in women with multiple IVF failures? An assessment of biological, translational and clinical data

Kutluk Oktay, MD, PhD, FACOG Professor of Obstetrics & Gynecology, Medicine, Cell Biology & Anatomy, and Pathology Vice Chair, Department of Obstetrics & Gynecology New York Medical College Director, Division of Reproductive Medicine and Innovation Institute for Fertility Preservation and IVF

Striking Differences Between					
Mitochondrial and Nuclear Genome					
Comparison between the human nuclear and mitochondrial genomes*					
Characteristic	Nuclear genome	Mitochondrial genome			
Size	~3.3 x 10 ⁹ bp	16,569 bp			
Number of DNA molecules per cell	23 in haploid cells; 46 in diploid cells	Several thousand copies per cell (polyploidy)			
Number of genes encoded	~20,000–30,000	37 (13 polypeptides, 22 tRNAs and 2 rRNAs)			
Gene density	~1 per 40,000 bp	1 per 450 bp			
Introns	Frequently found in most genes	Absent			
Percentage of coding DNA	~3%	~93%			
Codon usage	The universal genetic code	AUA codes for methionine; TGA codes for tryptophan; AGA and AGG specify stop codons			
Associated proteins	Nucleosome-associated histone proteins and non-histone proteins	No histones; but associated with several proteins(for example, TFAM) that form nucleoids			
Mode of inheritance	Mendelian inheritance for autosomes and the X chromosome; paternal inheritance for the Y chromosome	Exclusively maternal			
Replication	Strand-coupled mechanism that uses DNA polymerases α and δ	Strand-coupled and strand-displacement models; only uses DNA polymerase $\boldsymbol{\gamma}$			
Transcription	Most genes are transcribed individually	All genes on both strands are transcribed as large polycistrons			
Recombination	Each pair of homologues recombines during the prophase of meiosis	There is evidence that recombination occurs at a cellular level but little evidence that it occurs at a population level			

Mitochondrial Function not Limited to Just Being an "Energy Plant"

- Redox functions
- Oxygen sensing
- Fatty-acid oxidation (B-oxidation)
- Calcium hemostasis
- Cell Signaling
- Programmed Cell Death

Van Blerkom J Mitochondrion 2011

Mitochondria directly influence fertilisation outcome in the pig

 Shahinaz H El Shourbagy, Emma C Spikings, Mariana Freitas and Justin C St John

 The Mitochondrial and Reproductive Genetics Group, The Medical School, The University of Birmingham,

 Birmingham B15 2TT, UK

 Reproduction (2006) 131 233–245

 Table 5
 Fertilisation rates after IVF or ICSI on oocytes with (supplemented) and without (sham injection) mitochondrial supplementation.

Treatment	IVF fertilisation rate (%)	ICSI fertilisation rate (%)
BCB ⁺	37.5 ^a	40.4 ^c
BCB ⁻	17.6 ^b	19.8 ^d
BCB ⁻ supplemented	31.0 ^a	34.0 ^c
BCB ⁻ sham injected	17.0 ^b	10.0^{d}

^{a,b}Values in the same column with different superscripts differ (P < 0.002); ^{c,d}values in the same column with different superscripts differ (P < 0.001).

Mitochondri and genomi	ial dysfunction leads to telomere c instability archi,*# Peter J. S. Smitht and programmed cell death or apoptosis	and mitochondria appear
	been implicated in cellular senescence, apoptosis, aging	
	and aging-associated pathologies. Telomere shortening	
	and genomic instability have also been associated with	
	replicative senescence, aging and cancer. Here we show	
	that mitochondrial dysfunction leads to telomere attrition,	
	telomere loss, and chromosome fusion and breakage,	
	accompanied by apoptosis. An antioxidant prevented	
	telomere loss and genomic instability in cells with dys-	
	functional mitochondria, suggesting that reactive oxygen	
	species are mediators linking mitochondrial dysfunction	
	and genomic instability. Further, nuclear transfer protected	
	genomes from telomere dysfunction and promoted cell	
	Survival by reconstitution with functional mitochondria.	
	instability and may provide new therapeutic strategies	
	to combat certain mitochondrial and aging-associated	
	pathologies.	

Aging Cell (2002) 1, pp40-46

Table 1. F DNA Mut	ertility Rates tations, as Co	in Women with	h Inherited Patho lates in the Gener	genic Mitocho al Population.	ndrial
Age Range	e Women with Mito ge Mutati		ndrial DNA	General Population	P Value
	No. of Live Births	No. of Person-Years	Live Birth Rate (95% CI)	Live Birth Rate	
			no./1000 person-yr		
15–19 yr	17	761	22.3 (13.0–35.8)	32.2	0.14
20–24 yr	69	713	96.8 (75.3–122.5)	100.4	0.82
25–29 yr	91	651	139.8 (112.5–171.6)	117.6	0.12
30–34 yr	41	588	69.7 (50.0–94.6)	86.9	0.17
35–39 yr	12	516 🤇	23.3 (12.0–40.6)	38.5	0.08
40_44 yr	2	446	4.5 (0.54–16.2)	8.0	0.62
15 <mark>–44</mark> yr	232	3674	63.1 (55.2–71.8)	67.2	0.36

Summary

- Indirect <u>evidence in human and some direct</u> evidence in <u>animals</u> support essential role for intact mitochondrial function in oocyte health.
- Because mitochondria plays a <u>multitude of</u> <u>functions</u> in cell viability, the impact of mitochondrial dysfunction may not just be through reduced energy production.
- <u>Direct evidence</u> that mitochondrial function declines with age in human oocytes <u>is missing</u>.

Fidelity of DDX4 Ab Questioned Characterization of extracellular DDX4- or Ddx4positive ovarian cells Silvia F Hernandez^{1,2,6}, Nima A Vahidi^{4,6}, Solji Park⁴, R Patrick Weitzel⁵, John Tisdale⁵, Bo R Rueda^{1-3,7} & Erin F Wolff^{4,5,7} To the Editor: A few groups^{1–5} have now reported that ovarian-derived stem cells was reported to have a C-terminal domain that is expressed extracellularly, whereas the N terminus is expressed intracellularly² (OSCs; also known as oogonial stem cells or oocyte precursor cells) DDX4/Ddx4 expression was reported in freshly isolated OSCs and have been isolated from adult mouse⁵ and rat⁴ ovaries; these cells are able to undergo meiosis after transplantation back into recipient ovaafter propagation for 18 months (mouse) and 4 months (human) in defined cultures by immunostaining, reverse-transcription PCR ries and give rise to offspring. These cells have also been isolated from (RT-PCR), and fluorescence-activated cell sorting (FACS)2. Here we human adult ovaries, where they can give rise to oocytes after xeno-transplantation². The marker used to isolate viable cells with germ cell further characterize the expression of DDX4/Ddx4 in mouse, rhesus macaque and human ovarian cells using a polyclonal antibody specific characteristics. DDX4 in humans or Ddx4 in mice and rats (hereafter to DDX4 (ab13840; Abcam, generously provided by Jonathan Tilly referred to collectively as DDX4/Ddx4), is controversial because it and purchased from Abcam). was historically considered to be exclusively an intracellular protein By immunohistochemical analysis of paraffin-embedded tissue, distributed in the cytoplasm of germ cells. However, DDX4/Ddx4 we observed staining for DDX4/Ddx4 in the expected locations in Figure 1 Cells isolated by FACS using a DDX4-specific antibody do not express DDX4/Ddx4. (a) Representative immunostaining in human testis (n = 1) and ovary (n = 11). Right, the IgG control. Scale bar, 50 µm. Dashed arrows show spermatogon and spermatocytes; solid arrrows show oocytes. (b) Representative (n = 5 pooled per each mouse sample, n = 17for rhesus macaque, n = 5 for human) flow cytometry plots of cells from human, rhesus macaque and mouse 1114 VOLUME 21 | NUMBER 10 | OCTOBER 2015 NATURE MEDICINE

Debate on DDX4

Woods and Tilly reply:

Zhang et al.¹ state that they were unable to repeat findings presented in our 2012 publication in *Nature Medicine* regarding the characterization of oogonial stem cells (OSCS) in mouse and human ovaries², using methods further detailed a year later³. Separately, Hernandez et al.⁴ question the specificity of antibodies that target the C terminus of DDX4 (DEAD box polypeptide 4) to viably sort OSCs from adult mouse, monkey and human ovaries, as we reported^{2,3}. Although these two correspondences focus on our work from 2012, DDX4specific antibody-based sorting of OSCs was first published in 2009 by another laboratory⁵. A year before this publication, Richards et al.⁶ reported isolation of viable germ cells from cultures of human embryonic stem cells using fluorescence-activated cell sorting (FACS) coupled with DDX4-specific antibodies. Our 2012 study therefore represents independent methodological verification of these two earlier reports. prepared by DDX4 antibody-based sorting. Because, however, the ovarian cells sorted and used by Zhang *et al.*¹ differ from the OSC others and we have isolated and described, it is not surprising the their downstream endpoint analyses would not reproduce what has been already reported using purified OSCs as starting material.

With that said, apparent differences between our findings an those of Zhang et al.¹ and Hernandez et al.⁴ regarding the ability of DDX4-specific antibodies to isolate OSCs highlight a fundamen tal issue raised by both sets of authors. Namely, is DDX4 entirel cytoplasmic in all germ cells at all stages of differentiation or d OSCs differ from other germ cells in their membrane localizatio of DDX4, thus making the protein available to be targeted in purfication schemes involving magnetic-assisted cell sorting or FACS If the latter case is true, why have some groups been able to repeathe DDX4-specific antibody–based approach to isolate OSCs while others have failed?

Original Article	
Oogonial Precursor Cell-Derived Autologous Mitochondria Injection to Improve Outcomes in Women With Multiple IVF Failures Due to Low Oocyte Quality: A Clinical Translation	Reproduzive Sciences 1-6 The Author(s) 2015 Reprints and permission: sagepub.com/oursaffermissions.nav DOI: 10.1177/1933719115612137 rs.agepub.com SAGE
Kutluk Oktay, MD, FACOG ^{1,2,3} , Volkan Baltaci, MD ³ , Murat Sonmezer, MD ⁴ , Volkan Turan, MD ^{1,2} , Evrim Unsal, Ph Aysun Baltaci, MD ³ , Suleyman Aktuna, PhD ³ , and Fred Moy, Ph	D ³ , D ^{1,2}
Abstract Background: Mitochondrial dysfunction has been suggested as a major cause of age-inc	luced decline in oocyte quality. In the past,
Abstract Background: Mitochondrial dysfunction has been suggested as a major cause of age-in donor oocyte cytoplasmic transfer showed some success but was abandoned due to studies indicated presence of oogonial precursor cells (OPCs) in the human ovary, "healthy mitochondria." We sought to investigate the clinical efficacy of OPC-derived au	luced decline in oocyte quality. In the past, the concerns with heteroplasmy. Recent which could be an autologous source of tologous mitochondrial injection (AMI) to
Abstract Background: Mitochondrial dysfunction has been suggested as a major cause of age-ind donor oocyte cytoplasmic transfer showed some success but was abandoned due to studies indicated presence of oogonial precursor cells (OPCs) in the human ovary, "healthy mitochondria." We sought to investigate the clinical efficacy of OPC-derived au improve oocyte quality in women with multiple in vitro fertilization (IVF) failures. M laparoscopically obtained ovarian cortical pieces by cell sorting using a monoclonal anti- and mitochondria were isolated. Reconstituted mitochondria were injected into ear injection. Philed comparisons were made herveen the first failed cortex and the port	duced decline in oocyte quality. In the past, the concerns with heteroplasmy. Recent which could be an autologous source of tologous mitochondrial injection (AMI) to tethods: The OPCs were isolated from DDX antibody. They were then disrupted th oocyte during intracytoplasmic sperm AMI cycles Results: Of the 15 werean
Abstract Background: Mitochondrial dysfunction has been suggested as a major cause of age-ind donor oocyte cytoplasmic transfer showed some success but was abandoned due to studies indicated presence of oogonial precursor cells (OPCs) in the human ovary, "healthy mitochondria." We sought to investigate the dinical efficacy of OPC-derived au improve oocyte quality in women with multiple in vitro fertilization (IVF) failures. M laparoscopically obtained ovarian cortical pieces by cell sorting using a monochonal anti- and mitochondria were isolated. Reconstituted mitochondria were injected into easi injection. Paired comparisons were made between the first failed cycles and the post undergoing ovarian stimulation, 2 were canceled and 3 decide to pool oocytes for late (1), AMI significantly improved fertilization rates (49, 7 ± 31.3 vs 73.3 ± 18.9; P = .03). ± 0.3 vs 3.1 ± 0.7; P = .08). Four of 10 women conceived after single frozen embryo tr	Juced decline in oocyte quality. In the past, the concerns with heteroplasmy. Recent which could be an autologous source of tologous mitochondrial injection (AM) to lethods: The OPCs were isolated from DDX antibody. They were then disrupted h oocyte during intracytoplasmic sperm -AMI cycles. Results: Of the 15 women r AMI. In remaining 10 (mean age 34.7 ± with a trend for better embryog grades (2.3 ansfer and 3 after confirmation of diploidy

Characteristics of Patients							
	Age (years)	D2-3 FSH (IU/ml)	D2-3 E2 (pg/ml)	AMH (ng/ml)	N of IVF failures		
	27	6.1	57	2.5	6		
	31	7.2	39	3.5	3		
	32	5.9	36	NA	2		
	34	15.2	100	1.4	7		
	35	7.4	47	1.8	5		
	35	6.9	NA	NA	4		
	36	NA	NA	NA	2		
	36	5.5	134	1.1	3		
	40	9	NA	NA	7		
	41	5.6	39	0.7	3		

Age Fresh/Frozen PGS N of Pregnancy						
(years)		(N of embryos)	embryos transferred	outcome		
27	Fresh	NA	2	-		
31	Frozen- thawed	2 normal out of 7	2	-		
32	Frozen-thawed	4 normal out of 8	1	Pregnancy loss		
34	Frozen-thawed	1 normal out of 3	1	Live birth		
35	Fresh	NA	2	-		
35	Fresh	NA	2	-		
36	Frozen-thawed	1 normal out of 7	1	Ongoing Pregnancy		
36	Frozen- thawed	NA	2	-		
40	Fresh	NA	2	-		
41	Frozen- thawed	NA	1	Pregnancy Loss		

Comparison Of Augment with Age Matched Historical Control Group								
AugmentControlP(n=10)(n=20)value								
Mean Age	34.7 ± 4.1	35.1 ± 3.6	0.91					
# Previous IVF Failures	4.3± 2.0	3.4 ± 0.5	0.53					
# Embryos Transferred	1.6 ± 0.5	1.6 ± 0.5	1.00					
Clin. Pregnancy Rate (%)	4/10 (40)	3/20 (15)	0.18					
Live/Ong. Birth Rate (%)	2/10 (20)	1/20 (5)	0.25					
	1	1						

Г

Data From other Augment Center						
	THE AUGMENT EXPERIENCE					
		TCART	FAKIH IVE			
	Total AUGMENT cycles initiated	34	60			
	Average cycles per patient	1	1			
	Total embryo transfers	26	34			
	Clinical pregnancy rate: • per cycle initiated • per embryo transfer	12/34 (35%) 12/26 (46%)	13/60 (22%) 13/34 (38%)			
	Ongoing clinical pregnancy and live birth rate: • per cycle initiated • per embryo transfer	9/34 (26%)* 9/26 (35%)*	11/60 (18%)** 11/34 (32%)**			
	*includes 1 live birth **includes 2 live births (two sets of twins) Note: All on-going clinical pregnancies reported I pregnancies at the time of publication submission	here were contir	nuously on-going			

Data From other Augment Centers								
	Patient History	Clinical Pregnancy Rate per Initiated AUGMENT Cycle	Clinical Pregnancy Rate per AUGMENT Embryo Transfer	Ongoing Clinical Pregnancy Rate/ Live Birth Rate per Initiated AUGMENT Cycle	Ongoing Clinical Pregnancy/ Live Birth Rate per AUGMENT Embryo Transfer			
Canada	Average age: 36.0 1-5 prior IVF cycles	35%*	46%*	26%	35%			
United Arab Emirates	Average age: 37.3 1-16 prior IVF cycles	22%	38%	18%	32%			
• No C • Patie	Control grou ents with si	រp ngle IVF 1	failure tr	eated				
	Fakih (2015 of the 154. (MH, Shmoury N i) The AUGMEN : Initial Global P doi:10.4172/23;	ЛЕІ, Szeptycki J, TSM Treatment atient Experien 75-4508.10001:	dela Cruz DB, L : Physician Repo ce. JFIV Reprod 54	.ux C, et al. orted Outcome Med Genet 3:			

Augment: Lack of Livebirths > Age 40					
Age (years)	# of Patients	# bHCG +	# Clinical Pregnancies	# Ongoing Clinica Pregnancies	
20-30	5	3*	3*	2*	
31-35	10	7*	6*	6*	
36-40	14	5	3	1	
41-45	5	-	-	-	
46-48	-	-	-	-	
Totals	34	15	12	9	
ncludes one pr	egnancy each fron	n a subsequent F	frozen embryo tra AKIH IVF	nsfer	
Age (years)	# of Patients	# bHCG +	# Clinical Pregnancies	# Ongoing Clinica Pregnancies	
20-30	5	3	2	2	
31-35	12	3	3	3	
36-40	28	7	7	5	
41-45	10	2	1	1	
46-48	4	-	-	-	
Totals	59	15	13	11	

Sumary & Conclusions

- Initial non-randomized studies suggest some improvement in fertilization, embryo quality and possibly pregnancy rates < age 40 with OPC-derived mitochondria injection.
- Specifity of these improvements cannot be proven from the current data
- Further prospective-randomized data are needed before this treatment can be considered effective and safe.

• Molecular Reproduction & Fertility Preservation Laboratory at NYMC:	Supported by R01 HD053112 and R21 HD061259	
 Shiny Titus, PhD Fred Moy, PhD (Biostat) Robert Stobezki, PhD Biran Musul, B.Sc. Yodo Sugishida, MD, PhD Heesuk Chae, MD 	 Innovation Institute for Fertility Preservation Kutluk Oktay, MD, PhD Giuliano Bedoschi, MD Giuliano Bedoschi, MD Allison Rosen, PhD Enes Taylan, MD Carmen Dabao Past Fellows: Fernanda Pacheco, MD Youn Chung, MD Volkan Emirdar, MD Jhaasi Reddy, MD Kyungah Jeong, MD Yoikan Turan, MD Enol Arslan, MD Aylin Cil, MD Murat Sonmezer, MD Sanghoon Lee, MD Ozgur Oktem, MD Kenny Rodriguez, MD, PhD Elke Heytens, PhD Elke Heytens, PhD IlginTurkcuoglu, MD Margalida Sastri, MD 	
Extra-Mural Collaborators: Sumanta Goswami, PhD, Yeshiva/AECOM Maura Dickler, MD & Mark Robson, MD, Memorial Sloan Kettering Cancer Ctr Evrim Unsal, PhD, & Volkan Baltaci, MD, PhD, Yeni Yuzyil Univ, Istanbul, TR		
fertilitypreservation.org i-fertility.net	– Sinan Ozkavukcu, MD, PhD	

CSIRO PUBLISHING				
Reproduction, Fertility and I http://dx.doi.org/10.1071/RD	Development 911305			
Microarray	analysis of mRN/	A from cumu	lus cells	
following in	vivo or in vitro r	naturation o	f mouse	
cumulus-oo	ocyte complexes			
Karen L. Kind ^{A, B} Anne Macphers and Jeremy C. T	⁸ , Kelly M. Barwell ^A , K on ^A , Ashley Gauld ^A , D. 'hompson ^{A,C}	athryn M. Gebha arryl L. Russell ^A	rdt^,	
Table 2. List of selected genes differentially regula	ted, as detected by	microarray an	alysis, in cum	lus cells derived from <i>in vitro</i> - compared wit
ň.	n vivo-matured cun	ulus-oocyte c	complexes	
Genes with a positive fold change (fold change $= 2^{M}$) w	ere found to be highe	er in cumulus c	ells derived from	n in vitro-matured (IVM) oocytes, whereas gene
Genes inter a positive role entitige (love entitige = 2) i				
with a negative fold change were higher in cumulus	cells derived from	in vivo-mature	ed (IVV) oocyt	es. BMP, bone morphogenetic protein; TGF-
with a negative fold change were higher in cumulus	cells derived from transforming	<i>in vivo</i> -mature growth factor-	ed (IVV) oocyt β	es. BMP, bone morphogenetic protein; TGF-f
with a negative fold change were higher in cumulus Gene name	cells derived from transforming Accession no.	in vivo-mature growth factor- M-value	ed (IVV) oocyt β P-value	es. BMP, bone morphogenetic protein; TGF-f Gene function (biological process)
Gene name Phosphodicsterase 7B (<i>Pde7b</i>)	cells derived from transforming Accession no. NM_013875	in vivo-mature growth factor- M-value 7.5	ed (IVV) oocyt β <i>P</i> -value 0.00016	es. BMP, bone morphogenetic protein; TGF-f Gene function (biological process) cAMP phosphodiesterase activity
Gene name Phosphodicsterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10)	cells derived from transforming Accession no. NM_013875 NM_009158	in vivo-mature growth factor- M-value 7.5 6.6	ed (IVV) oocyt β <i>P</i> -value 0.00016 0.00015	es. BMP, bone morphogenetic protein, TGF-f Gene function (biological process) cAMP phosphodiesterase activity ATP binding, kinase activity
Gene name Phosphodiesterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10) Insulin-like growth factor binding protein 5 (kg/bp.5)	cells derived from transforming Accession no. NM_013875 NM_009158 NM_010518	in vivo-mature growth factor- M-value 7.5 6.6 6.5	ed (IVV) oocyt β	es. BMP, bone morphogenetic protein; TGF-f Gene function (biological process) eAMP phosphodiesterase activity ATP binding, kinase activity Growth factor binding
Gene name Phosphodiesterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10) Insulin-like growth factor binding protein 5 (kg/bp5) Bone morphogenetic protein 4 (Bmp4)	cells derived from transforming Accession no. NM_013875 NM_009158 NM_010518 BC013459	in vivo-mature growth factor- M-value 7.5 6.6 6.5 5.7	ed (IVV) oocyt β	Gene function (biological process) cAMP phosphodiesterase activity ATP binding, kinase activity Growth factor binding BMP receptor binding, growth factor activit
Gene name Phosphodicsterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10) Insulin-like growth factor binding protein 5 (kg/bp5) Bone morphogenetic protein 4 (Bnp4) Growth arrest specific 6 (Gas6)	cells derived from transforming Accession no. NM_013875 NM_009158 NM_010518 BC013459	in vivo-mature growth factor- M-value 7.5 6.6 6.5 5.7 5.0	ed (IVV) oocyt β	es. BMP, bone morphogenetic protein; TGF-f Gene function (biological process) cAMP phosphodiesterase activity ATP binding, kinase activity Growth factor binding BMP receptor binding, motal ion binding
Gene name Gene name Phosphodiesterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10) Insulin-like growth factor binding protein 5 (kg/bp.5) Bone morphogenetic protein 4 (Bmp4) Growth arrest specific 6 (Gas6) Anti-Müllerina hormone type 2 receptor (Amhr2)	cells derived from transforming Accession no. NM_0013875 NM_009158 NM_010518 BC013459 NM_144547	in vivo-mature growth factor- M-value 7.5 6.6 6.5 5.7 5.0 4.8	ed (IVV) oocyt β	es. BMP, bone morphogenetic protein; TGF-f Gene function (biological process) cAMP phosphodiesterase activity ATP binding, kinase activity Growth factor binding BMP receptor binding, growth factor activit Calcium ion binding, TGF-β activity
Gene name Gene name Phosphodiesterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10) Insulin-like growth factor binding protein 5 (Igfbp5) Bone morphogenetic protein 4 (Bmp4) Growth arrest specific 6 (Gas6) Anti-Müllerian hormone type 2 receptor (Amhr2) A disintegrin-like and metallopeptidase (Adamts1)	cells derived from transforming Accession no. NM_013875 NM_009158 NM_010518 BC013459 NM_144547 NM_009621	in vivo-mature growth factor- 7.5 6.6 6.5 5.7 5.0 4.8 -4.1	P-value 0.00016 0.00015 0.00012 0.0015 0.0015 0.0015 0.0015 0.0015 0.00042 0.00048	s. BMP, bone morphogenetic protein; TGF- Gene function (biological process) cAMP phosphodiesterase activity ATP binding, kinase activity Growth factor binding BMP receptor binding, growth factor activit Calcium ion binding, TGF-β activity Heparin binding
Gene name Phosphodicsterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10) Insulin-like growth factor binding protein 5 (kgfbp5) Bone morphogenetic protein 4 (Bmp4) Growth arrest specific 6 (Gas6) Anti-Müllerian hormone type 2 receptor (Amhr2) A disintegrin-like and metallopeptidase (Adamt3) LH/choriogonadotrophin receptor (Lhcer)	cells derived from transforming Accession no. NM_013875 NM_009158 NM_010518 BC013459 NM_144547 NM_009621 NM_013582	<i>in vivo</i> -mature growth factor- 7.5 6.6 6.5 5.7 5.0 4.8 -4.1 -4.9	P-value 0.00016 0.00015 0.00015 0.00012 0.0015 0.0012 0.0015 0.00042 0.00048 0.00064	s. BMP, bone morphogenetic protein; TGF- Gene function (biological process) cAMP phosphodiesterase activity ATP binding, kinase activity Growth factor binding BMP receptor binding, growth factor activit Calcium ion binding, metal ion binding Hormone binding, TGF-β activity Heparin binding
Gene name Gene name Phosphodiesterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10) Insulin-like growth factor binding protein 5 (kg/bp5) Bone morphogenetic protein 4 (Bnp4) Growth artest specific 6 (Gas6) Anti-Mütllerian hormon (type 2 receptor (Amhr2) A disintegrin-like and metallopeptidase (Adamts I) LH/choriogonadotrophin receptor (Lhcgr) Pentraxin-related gene (Px3)	cells derived from transforming Accession no. NM_013875 NM_009158 NM_010518 BC013459 NM_013518 NM_013582 NM_008987	<i>in vivo</i> -mature growth factor- 7.5 6.6 6.5 5.7 5.0 4.8 -4.1 -4.9 -5.2	P-value 0.00016 0.00015 0.00015 0.00012 0.00042 0.00048 0.00064 0.00059	es. BMP, bone morphogenetic protein; TGF- Gene function (biological process) cAMP phosphodiesterase activity ATP binding, kinase activity Growth factor binding BMP receptor binding, growth factor activit Calcium ion binding, metal ion binding Hormone binding, TGF-β activity Heparin binding ATPase binding, LH receptor activity Inflammatory response
Gene name Gene name Phosphodiesterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10) Insulin-like growth factor binding protein 5 (Ig(bp.5) Bone morphogenetic protein 4 (Bmp4) Growth arrest specific 6 (Gas6) Anti-Müllerina hormone type 2 receptor (Amhr2) A disintegrin-like and metallopeptidase (Adamts I) LH/choriogonadotrophin receptor (Lhegr) Pentraxin-related gene (Ptx3) Hyaluronan synthase 2 (Has2)	cells derived from transforming Accession no. NM_013875 NM_009158 BC013459 NM_01518 BC013459 NM_04547 NM_009621 NM_008216	<i>in vivo</i> -mature growth factor- M-value 7.5 6.6 6.5 5.7 5.0 4.8 -4.1 -4.9 -5.2 -5.3	P-value 0.00016 0.00015 0.00015 0.0015 0.0015 0.0015 0.0015 0.0015 0.00042 0.00044 0.00059 0.00059 0.00054	s. BMP, bone morphogenetic protein; TGF-4 Gene function (biological process) eAMP phosphodiesterase activity ATP binding, kinase activity Growth factor binding BMP receptor binding, growth factor activit Calcium ion binding, metal ion binding Hormone binding, TGF-β activity Heparin binding ATPase binding, LH receptor activity Inflammatory response Hyaluronan synthase activity
Gene name Gene name Phosphodiesterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10) Insulin-like growth factor binding protein 5 (lgfbp5) Bone morphogenetic protein 4 (Bmp4) Growth arrest specific 6 (Gas6) Anti-Müllerian hormone type 2 receptor (Amhr2) A disintegrin-like and metallopentiae (Adamts 1) LH/choriogonadotrophin receptor (Lhcgr) Pentraxin-related gene (Pxx3) Hyaluronan synthase 2 (Has2) Interleukin-6 (Lh-6)	cells derived from transforming Accession no. NM_013875 NM_009158 NM_010518 BC013459 NM_013582 NM_013582 NM_008987 NM_008216 NM_031168	<i>in vivo</i> -mature growth factor- 7.5 6.6 6.5 5.7 5.0 4.8 -4.1 -4.9 -5.2 -5.3 -7.8	P-value 0.00016 0.00015 0.00015 0.00012 0.0012 0.00042 0.00044 0.00059 0.0008 0.0008 0.000667	s. BMP, bone morphogenetic protein; TGF-β Gene function (biological process) cAMP phosphodiesterase activity ATP binding, kinase activity Growth factor binding BMP receptor binding, growth factor activit Calcium ion binding, TGF-β activity Hermone binding, TGF-β activity Hermone binding, TH receptor activity ATPase binding, LH receptor activity Inflammatory response Hyaluronan synthase activity Cytokine activity, growth factor activity
Gene name Gene name Phosphodiesterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10) Insulin-like growth factor binding protein 5 (kg/bp5) Bone morphogenetic protein 4 (Bmp4) Growth arrest specifie 6 (Gas6) Anti-Müllerian hormone type 2 receptor (Amhr2) A disintegrin-like and metallopeptidase (Adamts1) LH/choriogonadotrophin receptor (Lhcgr) Pentraxin-related gene (Px3) Hyaluronan synthase 2 (Has2) Interleukin-6 (II-6) Betacellulin (Btc)	cells derived from transforming Accession no. NM_013875 NM_009158 NM_013875 NM_009158 DC013459 NM_013459 NM_003216 NM_008987 NM_008987 NM_008216 NM_007568	<i>in vivo</i> -mature growth factor- M-value 7.5 6.6 6.5 5.7 5.0 4.8 -4.1 -4.9 -5.2 -5.3 -7.8 -7.2	P-value 0.00016 0.00015 0.00015 0.00015 0.00012 0.00048 0.000048 0.000059 0.000067 0.00026	s. BMP, bone morphogenetic protein; TGF-4 Gene function (biological process) cAMP phosphodiesterase activity ATP binding, kinase activity Growth factor binding BMP receptor binding, metal ion binding Hormone binding, TGF-β activity Heparin binding ATPase binding, LH receptor activity Inflammatory response Hyaluronan synthase activity Cytokine activity, growth factor activity Growth factor activity
Gene name Gene name Phosphodiesterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10) Insulin-like growth factor binding protein 5 (kg/bp5) Bone morphogenetic protein 4 (Bmp4) Growth arrest specific 6 (Gas6) Anti-Müllerlian hormone type 2 receptor (Amhr2) A disintegrin-like and metallopeptidase (Adamts I) LH/choriogonadotrophin receptor (Lhegr) Pentraxin-related gene (Ptx3) Hyaluronan synthase 2 (Has2) Interleukin-6 (H-6) Betacellulin (Btc) Amphireguin (Aree)	cells derived from transforming Accession no. NM_013875 NM_009158 BC013459 NM_01518 BC013459 NM_009621 NM_009621 NM_008216 NM_003168 NM_007568 NM_00768	<i>bi vivo</i> -matura growth factor- 7.5 6.6 6.5 5.7 5.0 4.8 -4.1 -4.9 -5.2 -5.3 -7.8 -7.2 -7.7	d (IVV) oocyt β P-value 0.00016 0.00015 0.00012 0.0012 0.0014 0.00042 0.00059 0.00064 0.000068 0.000668	s. BMP, bone morphogenetic protein; TGF- Gene function (biological process) cAMP phosphodiesterase activity ATP binding, kinase activity Growth factor binding BMP receptor binding, growth factor activit Calcium ion binding, TGF-β activity Heparin binding ATPase binding, LH receptor activity Inflammatory response Hyalaroma synthase activity Cytokine activity, growth factor activity Growth factor activity, cytokine activity
Gene name Phosphodiesterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10) Insulin-like growth factor binding protein 5 (lgfbp5) Bone morphogenetic protein 4 (Bmp4) Growth arrest specific 6 (Gas6) Anti-Müllerian hormone type 2 receptor (Amhr2) A disintegrin-like and metallopeptidase (Adamts 1) LH/choriogonadotrophin receptor (Lhegr) Pentraxin-related gene (Ptx3) Hyaluronan synthase 2 (Has2) Interleukin-6 (II-6) Betacellulin (Btc) Amphiregulin (Areg)	cells derived from transforming Accession no. NM_013875 NM_009158 NM_010518 BC013459 NM_013582 NM_008987 NM_008987 NM_008987 NM_008216 NM_031168 NM_007568 NM_007950	<i>bi vivo</i> -mature growth factor- 7.5 6.6 6.5 5.7 5.0 4.8 -4.1 -4.9 -5.2 -5.3 -7.8 -7.2 -7.7 -1.02	P-value P-value 0.00016 0.00015 0.00013 0.0012 0.00042 0.00044 0.00059 0.0008 0.00064 0.000067 0.00066 0.000067 0.00068 0.000068	s. BMP, bone morphogenetic protein; TGF-β Gene function (biological process) cAMP phosphodiesterase activity ATP binding, kinase activity Growth factor binding BMP receptor binding, growth factor activit Calcium ion binding, metal ion binding Hormone binding, TGF-β activity Heparin binding ATPase binding, LH receptor activity Inflammatory response Hyaluronan synthase activity Cytokine activity, growth factor activity Growth factor activity, cytokine activity Growth factor activity
Gene name Gene name Phosphodiesterase 7B (Pde7b) Mitogen-activated protein kinase 10 (Mapk10) Insulin-like growth factor binding protein 5 (kg/bp5) Bone morphogenetic protein 4 (Bmp4) Growth arrest specifie 6 (Gas6) Anti-Müllerian hormone type 2 receptor (Amhr2) A disintegrin-like and metallopeptidase (Adamts1) LH/choriogonadotrophin receptor (Lhcgr) Pentraxin-related gene (Px3) Hyaluronan synthase 2 (Has2) Interleukin-6 (II-6) Betacellulin (Brc) Amphiregulin (Areg) Eniregulin (Lreg)	cells derived from transforming Accession no. NM_013875 NM_009158 NM_013875 NM_009158 NM_013459 NM_013459 NM_008216 NM_003827 NM_003867 NM_007568 NM_007568 NM_007560 NM_0033234	<i>in vivo</i> -mature growth factor- 7.5 6.6 6.5 5.7 5.0 4.8 -4.1 -4.9 -5.2 -5.3 -7.8 -7.2 -7.7 -7.7 -10.2 -10.9	ad (IVV) oocyt β P-value 0.00016 0.00015 0.00015 0.00012 0.00042 0.00064 0.00064 0.00064 0.00064 0.00064 0.00064 0.00064 0.00064 0.00067 0.00068 0.000061	s. BMP, bone morphogenetic protein; TĞF-4 Gene function (biological process) cAMP phosphodiesterase activity ATP binding, kinase activity Growth factor binding BMP receptor binding, metal ion binding Hormone binding, TGF-β activity Heparin binding ATPase binding, LH receptor activity Inflammatory response Hyaluronan synthase activity Cytokine activity, growth factor activity Growth factor activity Growth factor activity, cytokine activity Gas transport

	Co	chrane				
	Lib	orary				
	Cochr	ane Database of Sy	stematic Reviews	÷		
Cochrane D	atabase of Syst	ematic Reviews	2015. Issue 11	Art. No : CD009	749	
DOI: 10.100	2/14651858.CD	009749.pub2.				
		S.				
A	narogens (d	ergoing assis	ted reprod	luction (Revi	ew)	
~	onnen anae	Benng assis	- discard of the provide the			
N	agels HE Rishwor	rth ID Sirictatidie	CS Kroon B			
Na DHFA or testesteroor we	agels HE, Rishwoi	rth JR, Siristatidis	CS, Kroon B			
Na DHEA or testosterone ve Population: Women unde Settings: Outpatient clinic Intervention: DHEA or tes	agels HE, Rishwor rsus placebo/no treatmer rgoing assisted reproduct itosterone versus placebo	rth JR, Siristatidis nt for women undergoing a ion /no treatment	CS, Kroon B			
N: DHEA or testosterone ve Population: Women unde Settings: Outputient clinic Intervention: DHEA or test Outcomes	agels HE, Rishwor rsus placebo/no treatmer rooing assisted reproduct itosterone versus placebo Illustrative comparative	nt for women undergoing a nt for women undergoing a ion 'no breatment risks* (95% CI)	CS, Kroon B ssisted reproduction	No of participants (studies)	Quality of the evidence (GRADE)	Commen
N: DHEA or testosterone ve Population: Women unde Settings: Outputient Clinic Intervention: DHEA or tes Outcomes	agels HE, Rishwoi rsus placebo/no treatmer rgoing assisted reproduct tosterone versus placebo Illustrative comparative Assumed risk	rth JR, Siristatidis nt for women undergoing a ion 'no treatment e risks* (95% CI) Corresponding risk	CS, Kroon B ssisted reproduction Relative effect (95% CI)	No of participants (studies)	Quality of the evidence (GRADE)	Commen
N: DHEA or testosterone ve Population: Women unde Settings: Outputient clinic Intervention: DHEA or tes Outcomes	rsus placebo/no treatmen rgoing assisted reproduct tosferone versus placebo illustrative comparative Assumed risk Placebo/no treatment	rth JR, Siristatidis at for women undergoing a ion 'no treatment risks* (95% Ct) Cerresponding risk DHEA er testosterane	CS, Kroon B ssisted reproduction Relative effect (95% CI)	No of participants (studies)	Quality of the evidence (GRADE)	Comment
N: DHEA or testosterone ve Population: Women unde Settings: Outputient clinic Intervention: CHEA or tes Outcomes Live hirth/ongoing preg- nancy rate - DHEA	agels HE, Rishwoi rsus placebo/no treatmen rgoing assisted reproduct tosterone versus placebo Illustrative comparative Assumed risk Placebo/no treatment 116 per 1000	th JR, Siristatidis th for women undergoing a tion ino treatment or risks* (95% Ct) Corresponding risk DHEA or testosterone 192 per 1000 (141 to 256)	CS, Kroon B ssisted reproduction Relative effect (95% Cl) OR 1.81 (125 to 2.62)	No of participants (studies) 878 (8 studies)	Quality of the evidence (GRADE) @000000 moderate1	Comment

• • nen •	comp DH	par HEA	ed with A was a	n pla sso	iceb ciate	o or no ed with h	treatme nigher liv	nt, pre-tr ⁄e birth r	reatment w rates.
Figure 4. Fores	t plot	of co	omparison Li	: I Di ve bii	HEA or	or testostero Igoing pregn	one versus p ancy rate.	olacebo/no ti	reatment, outco
	DHEA	π :	Placeboino trea	fment		Odds Ratio	0	dds Ratio	Risk of Bias
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	М.Н.	Fixed, 95% CI	ABCDEF
1.1.1 DHEA							0000		La standard and a
Evans 2013 (1)	0	21	1	20	3.5%	0.30 (0.01, 7.87)			
Jindal 2014 (2)	35	203	17	203	32.9%	2.28 [1.23, 4.22]			
Moawad 2012 (3)	11	87	7	86	13.8%	1.86 [0.80, 4.57]			
Tartagni 2015a (4)	10	26	4	26	5.8%	3.44 (0.91, 12,95)			
Tartagni 2015b (5)	22	53	13	56	17.3%	2.35 (1.03, 5.37)			
Wiser 2010 (8)	3	17	1	16	2.0%	3.21 [0.30, 34.64]	-		
Yeung 2013a (7)	7	36	11	36	20.7%	0.55 [0.18, 1.63]	50 . (•+-	
Yeung 2014 (8)	2	16	2	16	4.1%	1.00 [0.12, 8.13]		-	
Subtotal (95% CI)		439		439	100.0%	1.81 [1.25, 2.62]		•	
Total events	90		56						
Heterogeneity: Chi# = Test for overall effect	8.16, df = 1 7 = 3.15/6	7 (P = 0 P = 0.00	32); P=14%						
			~				L 1	-	
1000.000.000.000.000.000.000.000.000.00						Fa	0.01 0.1 avours placebo/no	1 10 tmt Favours DHEA	100 Л
Test for subgroup differe	nces: Chi ^a	= 0.81	, df = 1 (P = 0.37)), P = 0%					
Footnotes							Risk of blas legen	d	
(1) Comparison was pla	cebo						(A) Random sequ	ence generation (se	election bias)
(2) Compatison was not	treatment	This st	udy transferred r	moré en	ibryos in	the intervention arm	(B) Allocation con	cealment (selection	bias)
(3) Comparison was not	treatment	reporte	d as ongoing pr	egnancy	rates		(C) Blinding of par	ticipants and perso	nnei (performance bias)
(4) Comparison was pla	cebo; parti	cipants	were intertile bi	ut not po	or respon	nders	(D) Blinding of out	come assessment	(detection bias)
(b) Companison was pla	ceno						(te) incomplete out	come data (attrition	DIAS)
(6) Companison was not	treatment						(P) Selective report	ting (reporting blas)	
(/) Companison was pla	cepo; repo	rted as	ongoing pregna	ancy rate	s; partici	pants were normal.	(u) utner blas		
(8) Companson was pla	CGDO								

When c	compai tostero	red with F one was a	olacet ssoci	oo or no tre ated with hi	eatment, pre-tre igher rates of li	eatment with ve birth.
Figure 4. Forest	plot of co	mparison: I	DHEA	or testosterone	versus placebo/no tre	atment, outcome: 1.1
Study or Subgroup	DHEA/T Events Total	Placebolino treatmen Events To	t tal Weight	Odds Ratio M.H. Fixed, 95% CI	Odds Ratio M.H. Fixed, 95% CI	Risk of Bias ABCDEFG
1.1.2 Testosterone Fábregues 2009 (9) Kim 2010 (10) Massin 2006 (12) Sudfotal (95% CB) Total events Heterogenety: Ch ² = 0 Test for overall effect 2	5 21 19 90 15 55 2 27 203 41 49, df = 3 (P = (= 2.69 (P = 0.0)	3 2 7 1 1 2 92); P= 0%	31 23.0% 30 21.7% 55 46.6% 26 8.6% 42 100.0%	1.79 [0.39, 0.27] 3.75 [0.62, 17.15] 2.57 [0.96, 6.92] 2.60 [1.30, 5.20] 2.60 [1.30, 5.20]	0.1 10 s plateboho tmt Favours DHEAT	100
(9) Comparison was no t (10) Comparison was no (11) Comparison was no (12) Comparison was pla	reatment. This s treatment. 3 tre treatment acebo	atment groups: 2 week	imulation pr s, 3 weeks o	otocol in the r 4 weeks of T		
4 Live birth rate by administration	length of T	4		Odds Ratio (M	M-H, Fixed, 95% CI)	Subtotals only
4.1 Up to 7 day 4.2 14 to 20 day 4.3 21 to 28 day	75	1 2 2	62 113 200	Odds Ratio (M Odds Ratio (M Odds Ratio (M	M-H, Fixed, 95% Cl) M-H, Fixed, 95% Cl) M-H, Fixed, 95% Cl)	1.79 [0.39, 8.27] 2.10 [0.50, 8.88] 3.16 [1.38, 7.23]
July 2, 2017			Pre-C	Congress Course / E	ESHRE 2017	

No signi pregnancy, ong	ficant difference in the o oing pregnancy, live birth	ocytes obtained, clinical n or miscarriage was obse	rved.
IVF cycle characteristics of the DH	EA and placebo groups.		
Cycle characteristic	DHEA group (n $= 16$)	Placebo group ($n = 16$)	P valu
Insemination IVF ICSI Gonadotropin	10 -4	11 2	.648
Duration (d) Dose (IU) E ₃ on day of hCG Follicies size	10 (9–12) 2,475 (2,194–3,206) 3,947 (2,781–4,408)	12 (9–15) 3,150 (2,475–4,388) 5,101 (1,479–6,222)	.114 .069 .347
14–15 mm 16–17 mm ≥ 18 Endometrial thickness (mm)	0.5 (0-1) 0 (0-2) 1 (1-2) 11.2 (9.4-13.8)	0 (0-0.5) 0 (0-1) 2 (1-2) 10.7 (9.3-12.5)	.169 .550 .430 .705
Number of Oocytes obtained Fertilized embryos Cleaved embryos Transferred embryos Frozen embryos TQE	3 (1.25-6.75) 3 (0.5-4) 3 (0.5-3.75) 2 (0.25-2) 0 (0-1.75) 1 (0-2)	2.5 (1-3) 1 (0-2) 1 (0-2) 1 (0-2) 0 (0) 0 (0-0.75)	.186 .155 .169 .430 .202 .141
these Data are presented as made and an other to 3	Sth centile) or number (percentage) as appropriate. P<.05 v	vas considered statistically significant. TQE - top-quality embry	06.

	Testosterone pretreatment (n = 26)	No pretreatment (n = 24)	Difference 95% Cl P-value
	% (n)		
Proportion of patients with at least one top quality embryos	20.0 (4)	23.8 (5)	- 3.8 - 28.2 to +
Patients with embryo transfer	83.3 (20)	91.3 (21)	-8.0 -28.2 to +
			0.47
The non-significant incr transdermal testoster	ease in the number one pretreatment w	of COCs, follo	0.47 +35 -135 to + owing ted
Cancelation rate The non-significant incr transdermal testoster with the pro Clinical pregnancy per embryo transfer	ease in the number one pretreatment w obability of embryo f	42 (1) of COCs, follo vas not associa transfer.	0.47 +35 -135 to +1 powing .ted
Cancelation rate The non-significant incr transdermal testoster with the pro Clinical pregnancy per embryo transfer	ease in the number one pretreatment w obability of embryo f	42 (1) of COCs, follo vas not associa transfer.	0.47 +35 -135 to + bowing .ted
Cancelation rate The non-significant incr transdermal testoster with the pro Clinical pregnancy per embryo transfer Live birth rate (ITT analysis)	ease in the number one pretreatment w obability of embryo f	42 (1) of COCs, follo vas not associa transfer. 9.5 (2) 8.3 (2)	-0.5 -19.0 to +

Table II Embryological outcome in the testosteroo	ne pretreatment :	and the no pretreat	ment groups.	
	-	and the no president	and a company	
	pretreatment (n = 26)	(n = 24)	between medians	P-van
Primary outcome measure				
Cumulus oocyte complexes (COCs), Intention to treat (ITT) analysis	3.5 (4.0, 2.0-5.0)	3.0 (3.0, 2.7-4.3)	-1.0 to +1.0	0.76
COCs per protocol analysis	4.0	3.0	-1.0 to +2.0	0.66
Secondary outcomes	(4.0, 2.0-3.3)	(3.0, 3.0-4.7)	_	
Metaphase II oocytes (MII) ITT analysis	3.0 (2.0, 2.0-3.5)	3.0 (2.0, 1.7-3.0)	-1.0 to +1.0	0.63
Maturation rate (MII/COCs) % per patient with COCs retrieved	100.0 (25.0, 78.3-100.0)	80.4 (50.0, 65.5-100.0)	0.0 to +25.0	0.77
2-pronuclei oocytes (2pn) ITT analysis	2.0 (3.0, 1.0-3.0)	2.0 (2.0, 1.0-2.3)	-1.0 to +1.0	0.50
Fertilization rate (2pn/COCs) % per patient with COCs retrieved	66.7 (32.5, 50.0-78.5)	66.7 (42.9, 48.8-75.0)	-16.7 to +25.0	0.73
Fertilization rate (2pn/MII) % per patient with COCs retrieved and treated by ICSI	85.4 (38.3, 66.7-100.0)	81.7 (33.3, 66.7-100.0)	-15.9 to +10.0	0.99
		2.0	0.010 11.0	0.27

Learning objectives Origin of aneuploidy & relevance to reproductive failure Oogenesis & meiosis Mechanisms leading to aneuploidy of female meiotic origin: Whole chromosome non-disjunction Unbalanced chromatid pre-division Methods employed for oocyte/ PB analysis: Advantages & disadvantages Oocyte analysis data: Karyotyping & FISH Comprehensive molecular cytogenetic methods (CGH & aCGH) Why is female meiosis so error prone? Recombination

- 1. Embryonic arrest
- 2. Implantation failure
- 3. Spontaneous abortion

Hassold and Hunt, 2001: Hassold et al., 2007

Meiosis
Specialised cell division taking place in reproductive tissue
• Reduces diploid chromosome number by half- haploid gametes created

Oocyte & polar body fixation on a slide

- Required for karyotyping or FISH analysis
- Involves hypotonic treatment followed by fixation on slide
- Enables visualisation of chromosomes & chromatids
- Risks artefactual chromosome loss
- Accurate hyperhaploidy scoring only

Picture from Mahmood et al., 2000; Fragouli et al., 2011

- Ottolini et al., (2015) mapped 2,032 female & 1342 male crossovers to infer 529 chromosome pair segregations
- 23 sets of PB1, PB2 & corresponding oocytes/embryos & 29 embryos analysed by karyomapping
- > 4 million SNPs genotyped after sample WGA
- 39 instances of whole chromosome aneuploidy & 3 segmental errors identified
- Unbalanced chromatid pre-division as main MI aneuploidy causing mechanism
- New "reverse" segregation detected
- Normal oocytes/embryos with ~6x more recombination events than aneuploid
- Higher global recombination rates protect again chromosome malsegregation

Ottolini et al., 2015

Wang et al., 2017

- Wang et al. (2017) examined male and female meiosis via computer modelling approach
- Oocyte & sperm crossover patterns simulation analysis
- Female recombination affected by crossover maturation inefficiency
- Phenomenon not observed for male recombination
- Phenomenon creates vulnerable chromosome configurations
- Phenomenon contributes significantly to oocyte aneuploidy
- Is an evolutionarily favoured trait?

Conclusions

- Chromosome abnormalities of female meiotic origin contribute significantly to reproductive failure
- Large numbers of oocytes/PBs examined with various cytogenetic methods
- Main mechanisms of female meiotic aneuploidy:
- 1. Whole chromosome non-disjunction
- 2. Unbalanced chromatid pre-division
- 3. Germinal/gonadal mosaicism (?)
- All chromosomes affected by aneuploidy, but smaller groups (D-G) more frequently abnormal
- Advancing female age affects both meiotic divisions, but MII especially
- Crossover frequency & maturity influence meiotic chromosome segregation
- Is an evolutionarily favoured trait?
- Does the use of PB1 & PB2 provide accurate representation of embryo?

Reading list
Angell RR: First-meiotic-division nondisjunc- tion in human oocytes. Am J Hum Genet 61: 23–32 (1997).
Angell RR, Xian J, Keith J: Chromosome anomalies in human oocytes in relation to age. Hum Reprod 8:1047–1054 (1993).
Christopikou D, Tsorva E, Economou K, Shelley P, Davies S, Mastrominas M, Handyside AH. Polar body analysis by array comparative genomic hybridization accurately predicts aneuploidies of maternal meiotic origin in cleavage stage embryos of women of advanced maternal age. Hum Reprod 28:1426-1434 (2013).
Cupisti S, Conn CM, Fragouli E, Whalley K, Mills JA, et al: Sequential FISH analysis of oocytes and polar bodies reveals aneuploidy mechanisms. Prenat Diagn 23: 663–668 (2003).
Delhanty JD: Mechanisms of aneuploidy induc- tion in human oogenesis and early embryogenesis. Cytogenet Genome Res 111:237–244 (2005).
Fisher JM, Harvey JF, Morton NE, Jacobs PA: Trisomy 18: studies of the parent and cell division of origin and the effect of aberrant re- combination on nondisjunction. Am J Hum Genet 56:669–675 (1995).
Fragouli E, Wells D, Thornhill A, Serhal P, Faed MJ, et al: Comparative genomic hybridization analysis of human oocytes and polar bodies. Hum Reprod 21:2319–2328 (2006).
Fragouli E, Alfarawati S, Goodall NN, Sánchez-García JF, Colls P, Wells D. The cytogenetics of polar bodies: insights into female meiosis and the diagnosis of aneuploidy. Mol Hum Reprod 17:286-295 (2011).

Reading list Hassold T, Hunt P: To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet 2:280-291 (2001). Hassold T, Merrill M, Adkins K, Freeman S, Sherman S: Recombination and maternal age-dependent nondisjunction: molecular studies of trisomy 16. Am J Hum Genet 57: 867-874 (1995). Hassold T, Hall H, Hunt P: The origin of human aneuploidy: where we have been, where we are going. Hum Mol Genet 16:R203-R208 (2007). Jones KT: Meiosis in oocytes: predisposition to aneuploidy and its increased incidence with age. Hum Reprod Update 14:143-158 (2008). Kuliev A, Verlinsky Y: Meiotic and mitotic non- disjunction: lessons from preimplantation genetic diagnosis Human Reprod Update 10: 401-407 (2004). Kuliev A, Cieslak J, Ilkevitch Y, Verlinsky Y: Chromosomal abnormalities in a series of 6,733 human oocytes in preimplantation di- agnosis for age-related aneuploidies. Reprod Biomed Online 6:54-59 (2003). Mahmood R, Brierley CH, Faed MJ, Mills JA, Delhanty JD: Mechanisms of maternal aneuploidy: FISH analysis of oocytes and polar bodies in patients undergoing assisted conception. Hum Genet 106:620-626 (2000).

Nicolaidis P, Petersen MB: Origin and mechanisms of non-disjunction in human autosomal trisomies. Hum Reprod 13:313–319 (1998).

Reading list

Ottolini CS, Newnham LJ, Capalbo A, Natesan SA, Joshi HA, Cimadomo D, Griffin DK, Sage K, Summers MC, Thornhill AR, Housworth E, Herbert AD, Rienzi L, Ubaldi FM, Handyside AH, Hoffmann ER: Genome-wide maps of recombination and chromosome segregation in human oocytes and embryos show selection for maternal recombination rates. Nat Genet 47:727-735 (2015).

Pellestor F: Frequency and distribution of aneuploidy in human female gametes. Hum Gen- et 86:283–288 (1991).

Pellestor F, Andreo B, Arnal F, Humaeu C, Demaille J: Maternal ageing and chromosomal abnormalities: new data drawn from in vitro unfertilized human oocytes. Hum Genet 112:195–203 (2003).

Sherman SL, Freeman SB, Allen EG, Lamb NE: Risk factors for nondisjunction of trisomy 21. Cytogenet Genome Res 111:273–280 (2005).

Wang S, Hassold T, Hunt P, White MA, Zickler D, Kleckner N, Zhang L: Inefficient Crossover Maturation Underlies Elevated Aneuploidy in Human Female Meiosis. Cell 168:977-989.e17 (2017).

Wells D, Delhanty JD: Comprehensive chromo- somal analysis of human preimplantation embryos using whole genome amplification and single cell comparative genomic hybridisation. Mol Hum Reprod 11:1055–1062 (2000).

Reading list

Wells D, Sherlock JK, Handyside AH, Delhanty JD: Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridisation. Nucleic Acids Res 27: 1214–1218 (1999).

Zenzes MT, Casper RF: Cytogenetics of human oocytes, zygotes and embryos after in vitro fertilisation. Hum Genet 88:367–375 (1992).

Does polar body analysis accurately predict the aneuploidy status of the developing embryo?

Alan Handyside The Bridge Centre, London, University of Kent, Canterbury and Illumina, Cambridge, UK

THE

Ring

CENTRE

Learning objectives

- Normal and abnormal patterns of chromosome segregation in female meiosis
- Basis of polar body analysis, advantages and disadvantages
- Principles of copy number analysis by array comparative genomic hybridisation (array CGH) or next generation sequencing (NGS)
- Principles of genome-wide single nucleotide polymorphism (SNP) and meiomapping for polar body analysis
- Accuracy of polar body analysis for maternal aneuploidies arising in female meiosis

THE

September 2, 2009 New IVF test–Array CGH Produces baby Oliver, offering hope to infertile

- ▶ 13 previous failed IVF cycles
- > 7/9 first polar bodies aneuploid

- 41 patients, 42 ICSI cycles
- Mean maternal age 40 years
- 226 oocytes/zygotes biopsied
- Array CGH of both polar bodies and the corresponding zygote analysed blind to confirm the diagnosis
- 55 (28%) euploid, 140 (72%) aneuploid
- All aneuploid in 19/42 cycles (42%)
- 8 clinical pregnancies, 1 livebirth, 7 ongoing
- 19% per cycle, 33% per ET

ESHRE PGS Task Force: Handyside et al (2012) EJHG 20, 742

Se ar (P	egreg nd se B1/F	gatior cond PB2/Z	n pa I pol Zygo	tte ar te	err b	ns od	of lie	co s a	op an	yr do	nu coi	ml rre	be esp	r g	gai nd	ns in	g z	nd Yg	lc got	oss tes	es	ir	۱t	he	e fi	rst	:	
Zvgote	Origin	Pattern	Cause								N	lo w	ith d	liffe	rent	patt	erns	per	chro	omo	som	е						
-18-1-	- · · a · · ·			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	ХҮ	Total	%*
		NNN		98	91	99	92	93	96	95	85	90	96	80	94	83	96	81	76	86	88	79	85	77	71	92	2023	
GAIN	MI MI/MII MII Other	{ LGG LNG LLG LGN NLG NNG	NDJ PD	0 0 0 0 0	0 0 1 2 0	0 0 0 0 1	0 3 0 1 1 1	0 1 0 1 1	0 1 0 1 1	0 0 0 0 0	0 1 0 4 2 0	0 3 0 1 1 1	0 0 1 2 1	0 3 0 1 4 2	0 1 0 2 1 1	0 1 0 4 4 1	0 1 0 1 0 1	0 4 0 3 4 0	1 3 0 2 6 1	0 1 0 0 3 0	1 2 0 0 1 0	0 6 1 4 2	0 2 0 1 3 1	0 4 0 2 9 3	0 5 0 2 6 0	0 0 1 0 1	2 42 0 28 55 18	1 23 31
SS OJ To aneuso	MI MI/MII MII Other Ital mater Ital mater	GLL GNL LGL GLN NGL NNL rnal ccluding	NDJ PD	1 0 1 0 0	0 1 0 1 1 1	0 0 0 0 1	0 3 0 1 0 2 7	0 0 0 2 0	0 0 0 1 0 3	0 2 0 1 1 2 3	0 2 1 1 1	0 1 0 2 0 0 5	0 0 1 1 0 3	0 2 0 5 1	0 2 0 1 2 5	0 1 0 1 2 0	0 0 1 3 2	1 3 0 3 1 2 13	0 3 0 3 5 0 18	0 2 0 1 3 4	0 1 2 4 0	0 2 0 1 4 1 16	0 1 0 4 3	0 2 0 2 0 2 0	0 1 0 1 6 3	0 2 0 0 5 2	2 29 2 20 47 30	1 16 1 26
MI/MI	ll comper	isation)																										

- 19/20 reciprocal copy number changes in the first and second polar bodies resulted in normal copy number in the embryo
- 17 (12%) false positive copy number changes in polar bodies not associated with aneuploidy in the embryo
- Only 12/17 of these predicted aneuploidy

Retrospective study of	351 patie	nts	
	Control	PB aCGH	p
n	240	111	
Maternal age	38.4	39.5	<0.001
Live birth per embryo	14.9	26.4	0.015
Live birth per patient	22.7	35.7	0.031
Fec	htinger et	al (2015) P	LoS One 10 (5)

Summary

- Most aneuploidies in the human embryo arise as chromosome segregation errors in female meiosis
- Accurate diagnosis of maternal meiotic errors in the fertilised oocyte requires analysis of both the first and second polar bodies
- Copy number analysis by array CGH can result in false positives
- NGS based copy number analysis allows accurate discrimination of chromosome and chromatid gains and losses
- Meiomapping of all three products of meiosis allows accurate analysis of the mechanism of chromosome segregation errors

Cumulus – oocyte communication It's a conversation.....and both sides benefit!

IVI	ature	e homo	odimei	rs of G	DF9 and/o	or BM	P15 d	0
		no	t impro	ove oc	cyte qual	ity	0	
			Processing S	iite 👢			1 Com	B
	Pro-re	egion		M	ature		4	931
					<i>L</i>	_	PMD1E or	GDF9
					7	m m	ature regio (R&D Syst	n dimer ems)
					7	m	J Assist F	n dimer ems) Reprod Genet
Table 3 Effe	ect of graded d	oses of recombin	ant GDF9 during	g IVM on subseq	uent embry o development	m	J Assist F	n dimer ems) Reprod Genet
Table 3 Effe Treatment	ct of graded d GDF9 (ng/ml)	oses of recombin Number of oocytes	ant GDF9 during Cleavageª	t IVM on subseq Blastocyst on day 6 ^b	uent embryo development Hatching blastocyst on day 6°	ICM ^d	J Assist F	n dimer ems) Reprod Genet
Table 3 Effe Treatment	ect of graded d GDF9 (ng/ml) 0	oses of recombin Number of oocytes 152	ant GDF9 during Cleavage ^a 82.9±3.3	IVM on subseq Blastocyst on day 6 ^b 81.7±4.4	uent embryo development Hatching blastocyst on day 6 ⁶ 62.6±8.6	ICM ^d 16.0±0.8	J Assist F TE ⁴	n dimer ems) Reprod Genet TCN ^d 69.0±2.8
Table 3 Effe Treatment Control GDF9	ect of graded d GDF9 (ng/ml) 0 50	oses of recombin Number of oocytes 152 118	ant GDF9 during Cleavage ^a 82.9±3.3 74.6±5.2	IVM on subseq Blastocyst on day 6 ^b 81.7±4.4 72.6±8.9	uent embryo development Hatching blastocyst on day 6° 62.6 ± 8.6 61.8 ± 8.9	ICM ^d 16.0±0.8 16.8±1.1	J Assist F TE ^d 53.0±2.4 54.2±3.6	n dimer ems) Reprod Genet TCN ^d 69.0±2.8 71.0±4.4
Table 3 Effe Treatment Control GDF9 GDF9	ect of graded d GDF9 (ng/ml) 0 50 100	loses of recombin Number of oocytes 152 118 118	ant GDF9 during Cleavage ^a 82.9±3.3 74.6±5.2 74.8±9.6	Blastocyst on day 6 ^b 81.7±4.4 72.6±8.9 82.6±7.8	uent embryo development Hatching blastocyst on day 6° 62.6±8.6 61.8±8.9 59.1±7.6	ICM ^d 16.0±0.8 16.8±1.1 16.7±0.9	J Assist F TE ^d 53.0±2.4 54.2±3.6 49.2±2.6	n dimer ems) Reprod Genet TCN ^d 69.0±2.8 71.0±4.4 65.9±3.3

Learning objectives At the conclusion of this presentation, participants should be able to understand: * The interest of cumulus cells (CCs) * The knowledgment on human CCs * The micro-RNA expression in CCs * The impact of female aging on gene expression in human CCs * The CCs as biomarkers of oocyte competence and pregnancy outcome

able 1 fouse models with defects in cumulus expansion. For more detailed information, refer to reference [4].	
iene (symbol)	Fertility status	Ref
rostaglandin-endoperoxide synthase 2 (Ptgs2; Cox2)	Mostly infertile	[22,23]
rostaglandin E receptor 2, subtype EP2 (Ptger2)	Subfertile	[24-26
entraxin 3 (Ptx3)	Subfertile	[27,28]
umor necrosis factor α induced protein 6 (<i>Tnfaip6</i>)	Infertile	[29]
ulfotransferase family 1E, member 1 (Sult1e1)	Subfertile	[30,31]
lpha 1 microglobulin/bikunin (Ambp)	Subfertile	[32,33]
mphiregulin (Areg)	Subfertile	[34]
one morphogenetic protein 15 (Bmp15)	Subfertile	[35]
one morphogenetic protein receptor, type IB (Bmpr1b)	Subfertile	[36]
piregulin (Ereg ^{wa2/wa2} ; hypomorph)	Subfertile	[34]
Iitogen-activated protein kinases 3 and 1 (Mapk3 ^{-/-} Mapk1 cKO)	Infertile	[37]
Juclear receptor subfamily 5, group 2, member 1 (Nr5a1; Sf1, steroidogenic factor 1) (cKO)	Infertile	[38]
luclear receptor subfamily 5, group 2, member 2 (Nr5a2; Lrh1, liver receptor homolog 1) (cKO)	Infertile	[39]

Conclusions Transcriptomic data show that: aging widely impacts gene expression the decrease in fertility that occurs at 37 is supported by a dramatic molecular change after the age of 36 the physiological impact of aging is underlied by an alteration of expression of genes and pathways that are critical for oocyte quality and competence (insulin,TGF-beta etc) Genes that are essential to buffer the effect of hypoxia (angiogenic genes), which is linked with aging, are up-regulated in older CCs

Gene expression profiling of human oocyte									
Table 1 Microarray studies of occytes and embryos.									
Techniques	Samples	Number of identified genes	Targets	Study					
Human ooxytes and embryos									
HG-U(33 Plus 2.0 aray (Afymetrix)	Dooytes	1361 transcripts expressed in oucytes.	Study occyte transcriptomes	Bermudea et al. (2004)					
HGU133 Plus 2.0 array (Afymetrix)	Ocques	1514 overopresed in cogtes compared with currulus cells	Understanding of the mechanisms regulating occyste maturation	Assource at (2006)					
HGU133 Plus 2.0 array (Aflymetrix)	Ocques	5331 transcripts enriched in metaphase II occytes relative to somatic cells	Comprehension of genes expressed in in we matured oxysts	Kocabas et al. (2006)	During IVM				
HG-UI33 Rus 2.0 artuy (Allymetrix)	Ocques	$10\ \mathrm{IE}$ gens were expressed in germinal vesicle	Study of global gene expression in human occytes at the later stages of foliculogenesis (germinal vesicle stage)	Zhang et al. (2007)	According to female age				
HG UI33 Plus 2.0 array (Afymetrix)	Ouquis	Of the 8123 transcripts expressed in the outputs, 374 genes showed significant differences in mRNA abundance in PCOS occytes	Understanding of PCDS	Wood et al. (2007)	Under <i>in vivo or vitro</i> conditions In PCOS patients				
HG-UI33 Plus 2.0 array (Afymetrix)	Oscytes	-	Identify new potential regulators and marker genes which are involved in cocyte maturation	Gases et al. (2007)					
HG-U133 Plus 2.0 array (Aflymetrix)	Ocques	282 genes found in the case report sample	Identify molecular abnormalities in metaphase II (PM) socytes	Gauca et al. (2008)					
Whole Genome Bourrays printed with 54 840 docovery probes representing 18 055 human genes and an additional 29 378 human expressed sequence tags (657)	Ocques	2000 gins were identified as operand at more than 2 Abit higher levels in occytes matured in vito than those matured in We	Analysis of gare expression profile of occysts following in we or in who maturation	jures et al. (2008b)					
Appled Bolystems Human Genome Survey Microurzy (32 B78 60 mer silgonucleotide)	Ocquis	Germinal vesicle, in we MII and IM14111 cooptes expressed 12 219, 9735 and 8510 genes, respectively	Characterized the patterns of gene expression in germinal vesicle stage and meloais 8 occytes matured in who or in site	Wels and Patrizio (2008)					
HG UI33 Plus 2.0 array (Afymetrix)	Ocques	342 genes showed a significantly different expression level between the two age groups [women aged 36 years (younger) and women aged 37-39 years (older)]	Investigate the effect of age on game expression profile in mature copytes	Gronduhl et ol. (2010)					
Two (DNA microarrays, each containing about 20 000 targets (representing in total ~29 778 independent genes according to Unigere Build (55)	Occytes and embryos	1896 significant changes in expression following Institution through Day 3 of development	Global analysis of the preimpliantation embryo transcriptione	Dobson et al. (2004)					
cDNA microamps containing 9600 cDNA spots	Ocytes and embryos	184, 29 and 65 genes were overexpressed in occytes, 4- and 8-cell embryos, respectively	Identify differential expression probles of genes in single occytes, 4 and 8 cell preimplantation embryos	Li et al. (2006)					
Genome Survey Microarrays V2.0 (Applied Biosystems)	Ocques and ambryos	107 DNA repair gones were detected in occytes	Identify the DNA repair pathways that may be active pre- and post embryonic genome activation by investigating mRNA in human in vitro matured occytes and blastocyta.	Jaroudi et al. (2009)					
HG-U133 Plus 2.0 artay (Aflymetris)	Ocoptes and embryos	5477 transcripti differentially expressed into transition from mature occyse (MB) to 2 day embryo and 2989 transcripti differentially expressed into transition from 2 · to 3-day embryo	Sudy of global gene expression in human premplantation development.	Zhang et d. (2009)					
				Continued					
					Assou et al. 2010, HRU				

Biomarkers	Name	Function	Samples (individual or pooled)	Approaches	Outcome	Reference
STAR, AREG, Cx43, PTGS2, SCD1 and SCD5	Steroidogenic acute regulatory protein, amphiregulin, connexin 43, prostaglandin-endoperoxide synthase 2, stearoyl-CoA desaturase I and 5	STAR: regulated the cholesterol transport into the inner mitochondrial AREGs act as mediators of LH Cx43: permit the transfer of metabolites for growth and development and maintenance of meiotic arrests of the ocyte PTGS2: involved in inflammation and mitogenesis SCD: involved in biosynthesis of monoursaturated fatty acids from saturated dids	CCs from individual eggs	RT-PCR	Negatively associated with occyte competence	Feuerstein et a (2007)
HAS2, PTGS2, GREMI	Hyaluronan synthase 2, prostaglandin-endoperoxide synthase 2, gremlin 1		CCs from individual eggs	Quantitative RT-PCR	Positively associated with oocyte competence and embryo development	McKenzie et al. (2004)
BDNF, GREMI	Brain-derived neurotrophic factor, gremlin 1	BDNF: neurotrophic factor playing a role in regulation of stress response	CCs from individual eggs	Quantitative RT-PCR	Negative and positive predictors of embryo quality, respectively	Anderson et al (2009)
PGK1, RGS2 and RGS3, CDC42	Phosphoglycerate kinase 1, regulator of G-protein signaling 2 and 3, cell division cycle 42	PGK1: involved in glycolysis RGS: hydrolyzed GTP to GDP	Mural GCs and CCs (individual)	Quantitative RT-PCR	Associated with pregnancy	Hamel et <i>al.</i> (2010)
VCAN, RP56KA2, ALCAM, GREMI	Versican, ribosomal protein 56 kinase polypeptide 2, activated leukocyte cell adhesion molecule, gremlin I	VCAN: plays a central role in tissue morphogenesis and maintenance RPSK6KA2: involved in the EGF signaling cascade ALCAM: involved in immune response	Pooled CCs from eggs	Quantitative RT–PCR	Correlated with oocyte maturity, low fragmentation and embryo development	Adriaenssens et al. (2010)

Conclusions

From basic discoveries into clinical applications

To improve efficiency of IVF (higher pregnancy rates, lower cost per child born), by the establishment of SET and improved cIVF/ICSI results